Contrast and Generation Make BART a Good Dialogue Emotion Recognizer

Shimin Li^{1,3}, Hang Yan^{1,3}, Xipeng Qiu^{1,2,3}*

School of Computer Science, Fudan University
 Peng Cheng Laboratory, Shenzhen, Guangdong, China
 Shanghai Key Laboratory of Intelligent Information Processing, Fudan University {smli20, hyan19, xpqiu}@fudan.edu.cn

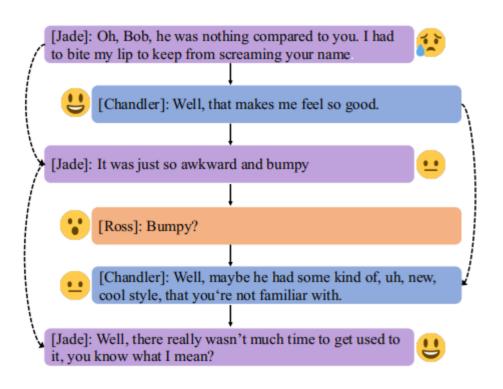
https://github.com/whatissimondoing/CoG-BART.

— AAAI 2022

2022.11.15 • ChongQing

Reported by Yuyang Lai

- 1.Introduction
- 2.Method
- 3. Experiments



Introduction

- long-range contextual emotional relationships with speaker dependency.
- supervised contrastive learning
- auxiliary response generation task

Figure 1: The conversation flow chart in multi-person dialogue emotion recognition.

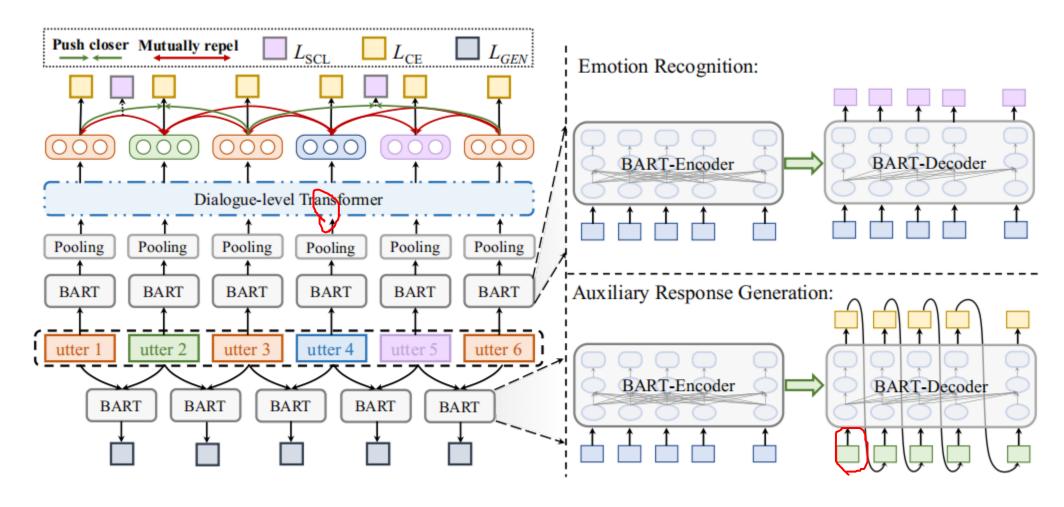
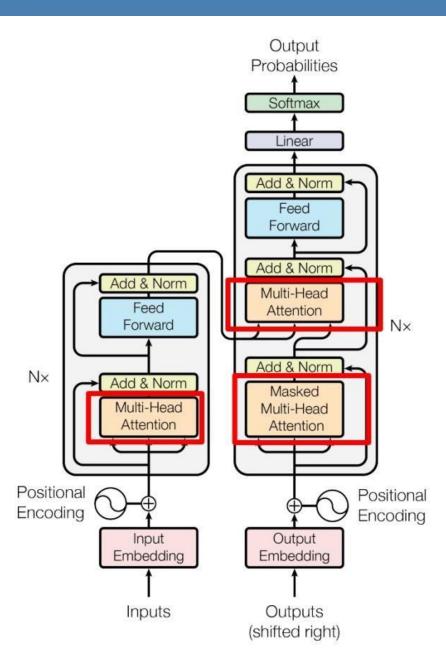
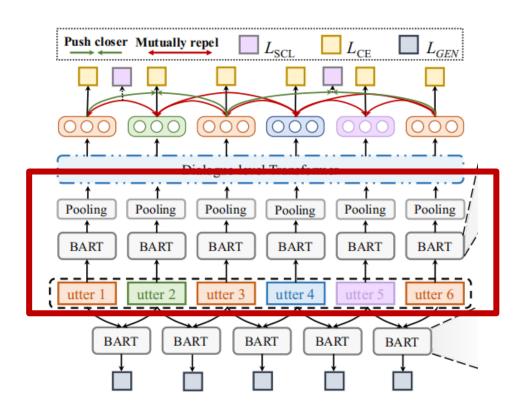
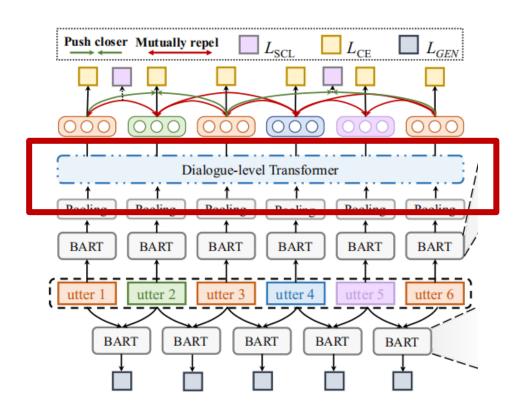




Figure 2: The overall framework of CoG-BART.

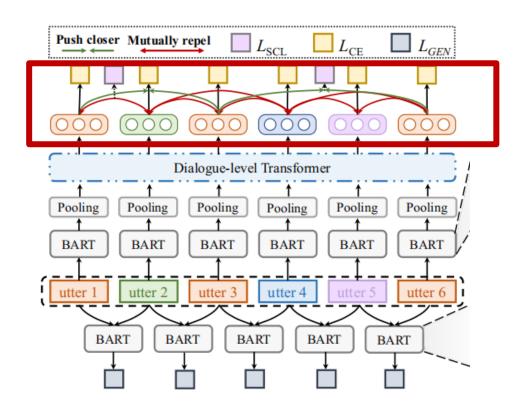


$$\tilde{u}_t = \left[\langle s \rangle, w_{t,1}, \cdots, w_{t,i}, \cdots, w_{t,|n_t|}, \langle /s \rangle \right], \qquad (1)$$

$$H_t = \text{EmbeddingLayer}(\tilde{u}_t),$$
 (2)

$$\widehat{H}_t = \text{BART-Model}(H_t),$$
 (3)

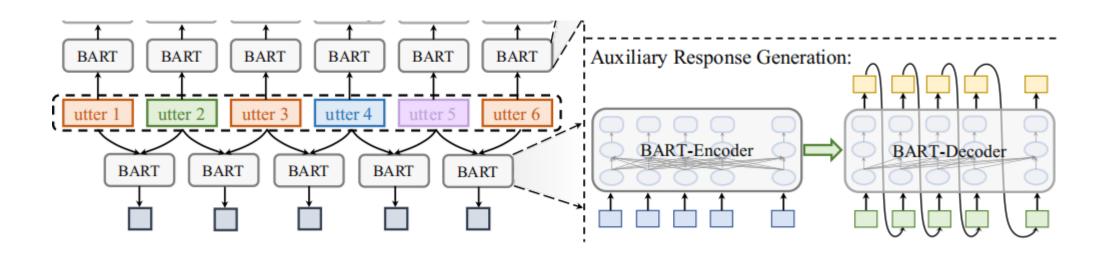
$$\check{h}_t = \text{max-pooling}(\widehat{H}_t).$$
(4)


$$Atten(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V,$$
 (5)

$$head_i = \text{Atten}(\check{h}_j W_i^Q, \check{h}_k W_i^K, \check{h}_k W_i^V), \tag{6}$$

$$MultiHead(Q, K, V) = [head_1; \cdots; head_n]W^O, \quad (7)$$

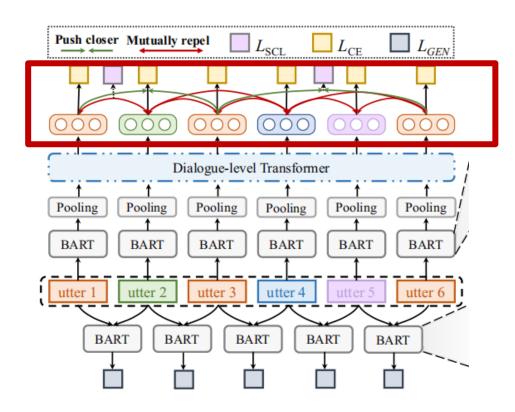
$$H_{win} = [\check{h}_t, \check{h}_{t+1}, \cdots, \check{h}_{t+bs-1}],$$
 (8)


$$H_{d\text{-}win} = \text{Dialogue-Transformer}(H_{win}),$$
 (9)

$$X = [H_{d\text{-}win}, \overline{H}_{d\text{-}win}], \tag{10}$$

$$\mathcal{L}_{SCL} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} SIM(p, i), \tag{11}$$

$$SIM(p,i) = \log \frac{\exp((X_i \cdot X_p)/\tau)}{\sum_{a \in A(i)} \exp(X_i \cdot X_a/\tau)},$$
 (12)



$$\acute{H}_t = \text{BART-Encoder}(H_t),$$
 (13)

$$\grave{h}_{i}^{d} = \text{BART-Decoder}(\acute{H}_{t}; \grave{h}_{\leq i}^{d}),$$
(14)

$$u_{t+1,j} = \text{Softmax}(\grave{h}_j^d), \tag{15}$$

$$\mathcal{L}_{Gen} = -\sum_{t=1}^{N} \log p(u_{t+1}|u_t, \boldsymbol{\theta}), \tag{16}$$

$$P_i = \text{Softmax}(W_s H_{d\text{-}win,i} + b_s), \tag{17}$$

$$\hat{y}_i = \operatorname{argmax}(P_i), \tag{18}$$

$$L_{\text{CE}} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \cdot \log \hat{y}_{i,c},$$
 (19)

$$\mathcal{L} = (1 - \alpha - \beta)\mathcal{L}_{CE} + \alpha \mathcal{L}_{SCL} + \beta \mathcal{L}_{Gen}, \quad (20)$$

Dataset		DD	MELD	ENLP	IEMOCAP
#Dial	Train	11118	1038	713	120
	Dev	1000	114	99	120
	Test	1000	280	85	31
#Utter	Train	87170	9989	9934	5810
	Dev	8069	1109	1344	5810
	Test	7740	2610	1328	1623
#CLS		7	7	7	6

Dataset	ME	ELD	Emor	yNLP	IEMO	OCAP	Daily	Dialog
Model	Weighted -Avg-F1	Micro-F1	Weighted -Avg-F1	Micro-F1	Weighted -Avg-F1	Micro-F1	Weighted -F1-neural	Micro -F1-neutral
BERT	62.28	63.49	34.87	41.11	60.98	-	53.41	54.85
RoBERTa	62.51	63.75	35.90	40.81	63.38	-	52.84	54.33
HiTrans	61.94	-	36.75	-	64.50	-	-	-
DialogXL	62.41	-	34.73	-	65.94	-	-	54.93
XLNet	61.65	-	34.13	-	61.33	-	-	53.62
BART-large	63.57	64.41	35.98	38.93	56.14	56.67	54.83	55.34
CoC BART	54 Q1 (⊥0 10)	65.05 (±0.44)	30 04 (±0 10)	42 58 (±0.04)	66 19 (±0.45)	66 71 (±0.40)	56 00 (±0.01)	56 20 (±0 17)

 $\textbf{CoG-BART 64.81} \; (\pm 0.19) \; \textbf{65.95} \; (\pm 0.44) \; \textbf{39.04} \; (\pm 0.10) \; \textbf{42.58} \; (\pm 0.94) \; \textbf{66.18} \; (\pm 0.45) \; \textbf{66.71} \; (\pm 0.49) \; \textbf{56.09} \; (\pm 0.01) \; \textbf{56.29} \; (\pm 0.17) \; \textbf{56.29} \; (\pm 0.18) \; \textbf{56.18} \; (\pm 0.48) \; \textbf{56.18} \;$

Table 1: Statistics of four benchmark datasets.

Table 2: The overall results of CoG-BART with pre-train-based baseline models on four datasets.

Dataset		DD	MELD	ENLP	IEMOCAP
#Dial	Train	11118	1038	713	120
	Dev	1000	114	99	120
	Test	1000	280	85	31
#Utter	Train	87170	9989	9934	5810
	Dev	8069	1109	1344	5810
	Test	7740	2610	1328	1623
#CLS		7	7	7	6

Table 1: Statistics of four benchmark datasets.

Figure 3: The t-SNE visualization results of the model output when α is 0 and 0.8, respectively.

Dataset	MELD	EmoryNLP	IEMOCAP	DailyDialog
Model	Weighted -Avg-F1	Weighted -Avg-F1	Weighted -Avg-F1	Micro -F1-neutral
KET	58.18	34.39	59.56	53.37
RGAT	60.91	34.42	65.22	54.31
RGAT+RoBERTa	62.80	37.89	66.36	59.02
DialogGCN	58.10	-	64.18	-
DialogCRN	58.39	-	66.20	-
COSMIC	64.28	37.10	63.05	56.16
DAG-ERC	63.65	39.02	68.03	59.33
CoG-BART	64.81 (±0.19)	39.04 (±0.10)	66.18 (±0.45)	56.29 (±0.17)

Table 3: Comparison with graph-based models.

Metric	Weighted Average F1					
Datasets	α=0.2	α=0.4	α=0.6	α =0.8	β =0.1	β=0.2
MELD	64.57	63.99	64.42	61.84	64.83	63.70
IEMOCAP	64.38	66.18	65.12	63.38	66.18	63.54
EmoryNLP	39.04	36.68	36.90	35.24	37.45	37.57

Table 4: The F1 scores for different values of α and β

Utterance for Prediction	Generated Response	Predict w/o RG	Predict with RG	Golden label
Joey: Thursday's clearly not good for ya, pick a day!	Sarah: So that's two boxes of the Holiday Macaroons. On behalf of the Brown Birds of America, I salute you.	anger	→ joy	joy
Joey: Man, that was great! Huh? Can you believe how long we threw that ball around?	Rachel: Yeah, it is amazing it lasted that long.	surprise	> joy	joy

Figure 4: Case studies show that response generation enables the model to correctly predict the emotion based on context.

Dataset	MELD	IEMOCAP		
Methods	Weight-Avg-F1			
CoG-BART	64.81	66.18		
-Gen	$64.26 (\downarrow 0.55)$	64.74 (\1.44)		
-SCL loss	64.28 (\\$0.53)	64.23 (\1.95)		
-Speaker	$64.14 (\downarrow 0.67)$	55.41 (\\$10.77)		
-Gen, SCL loss	63.57 (\1.24)	$62.90 (\downarrow 3.28)$		
-SCL loss, Speaker	63.72 (\\$1.09)	54.83 (↓ 11.35)		
-Gen, Speaker	$64.02 (\downarrow 0.79)$	54.95 (\11.23)		
-Dialog-Trans	64.40 (\dagger 0.41)	64.19 (\1.99)		

Table 5: Ablation study to evaluate the impact of different components on the overall performance of the model on MELD and EmoryNLP

Thank you!